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Lewis has found algorithms for many-particle plasma simulation models in which 
there exists an exact energy constant in the limit of small time step. The requirements 
for energy conservation are examined here and relaxed from those given by Lewis, 
in that his prescription for the difference form of Poisson's equation is found not 
necessary. One may therefore choose the Poisson algorithm to satisfy other criteria. 
However a connection is established between Lewis' difference equation, the inter- 
polation method, and the accuracy of the Coulomb interparticle forces. Unlike the 
usual models, momentum is not conserved by these algorithms. Rough measures are 
given for the importance of this nonconservation, in the simplest case of linear inter- 
polation. Another example uses spline interpolation to obtain smoother and more 
accurate fields and better momentum conservation. 

L ]~NTRODUCTION 

Lewis has derived a new class o f  many-part icle plasma simulation models f rom 
a Lagrangian formulat ion [1]. Because the models possess t ime-independent 
Hamil tonians,  they conserve energy exactly (to the extent that  the time integration 
is accurate). This is to be contrasted to  the more  usual models for  which it can  
be shown tha t  no  combina t ion  o f  the particle kinetic energy with field quantities 
defined on the spatial grid (charge density, potential,  and electric field) is an exact 
constant  [2]. 

In  addition, these models have become o f  interest because they also apparently 
suffer less f rom nonphysical  instabilities than do the usual models [2-4]. For  these 
reasons we have studied Lewis'  models further. 

One interesting aspect o f  Lewis'  derivation was that  for  each method  of  inter- 
pola t ion between the particles and the spatial grid there emerged a specific finite- 
difference fo rm of  Poisson's  equation. After seeing Lewis'  work,  the author  found  
a different derivation o f  the energy-conserving models;  this is discussed in [2] as 
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an application of the formalism developed there for other purposes. No restric- 
tion to a particular Poisson equation was found necessary to insure energy con- 
servation. However, the Lagrangian has built into it a specific force law which 
Lewis' formalism takes into account in prescribing the Poisson equation, in a 
manner to be shown in this paper. 

Reference [2] also remarked that the model does not conserve momentum, as 
exemplified microscopically by the force on a particle due to its own field (the 
usual models do conserve momentum). Macroscopically, examples are given in 
which a change in the total particle momentum should be easily noticed. This 
nonconservation is not unexpected, since the Hamiltonian is not invariant under 
displacement. Better understanding is desirable here. 

This paper reconsiders the requirements for energy conservation in a simpler 
manner than in [1, 2]. Then a connection is established between Lewis' Poisson 
operator and the accuracy of the force law. A relation is found between the 
sampling phenomenon known as "aliasing" and the failure of momentum con- 
servation. Examples of the latter are given; in particular we elaborate on the 
nature and magnitude of the self-force in the linear interpolation case. Finally, 
we show how improved algorithms may be derived, giving details in one example. 

] I .  THE ALGORITHM 

We first outline the model algorithm and our notation, following Ref. [2] except 
for the replacement of  S, by S. The charge density defined on the grid points is 

PJ = Z q i S ( X j  - -  x,). ( l)  
i 

The sum is over particles with charges qi and positions x i .  The grid points are 
labelled by the vector j whose components are integers. The location of  grid 
point j is Xj .  The interpolation function S is usually symmetric and can be 
regarded as the shape of a finite-size particle. Some modification may be necessary 
at boundaries. 

The electric potential, also defined on the grid, is the solution of a discrete 
analogue to Poisson's equation, and is a linear combination of  the {pj} and the 
boundary conditions if the latter are inhomogeneous. We therefore write the 
potential as 

q~j : Vc Z gj,tpt + ~Lex*, (2) 
1 

where gLt  is the Green's function for the difference Poisson's equation, and V~ 
is the volume of one grid cell. 
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Any fixed charge density can either be included in O and regarded as due to 
infinitely massive particles, or regarded as a contributor to ~j,ext �9 

The particle force is found from a potential energy V; interpolated from ~: 

Fi -- ~xi ~ Vi(x~) = --qiV~ Zj d~j -~ i  S(Xj -- xi), 

v , ( x 3  = q,v. ~ ~ j s ( x j  - xi). 
I 

(3a) 

(3b) 

The gradient of S is performed analytically and is therefore exact. It is this step 
which differs crucially from the common algorithms, in which the potential is 
differentiated numerically and then interpolated. In addition to conserving energy, 
this change also brings about the predicted improved stability [2, 4]. 

In differentiating V~, ~j is regarded as constant. In a code qSj is calculated from 
PJ in one step, and Fi is calculated in another step using that ~ .  It would not 
be convenient to compute an additional contribution involving e~s/gx~, nor is this 
necessary, as we shall see. The prescription given by Lewis, Eq. (50a) of [1], is 
identical to our (3a). We shall return to this point in Appendix A. 

Note that the same interpolation function S is used in Eqs. 1 and 3b. Lewis gave 
examples using first-order (linear) interpolation in one dimension and in two 
(where it is also called bilinear or "area weighting" [5]). However, there was no 
restriction to this case in [1, 2]. Zero-order interpolation (nearest-grid-point), 
in which S is a discontinuous function, is not suitable because of the gradient in 
Eq. (3). 

III. ENERGY CONSERVATION 

In this section we demonstrate the conservation of energy under rather general 
conditions on the field equations. Since the energy-conserving property applies 
exactly only when the time integration is exact for the particle equations of motion, 
we assume time is continuous in the following. 

The rate of change of kinetic energy is 

d d 1 
d--i K.e. = - d i  Z ~ m,~? = -- Z i,i . ~x~ qiVo Z ~S(X,  -- x3 

�9 i j 

d 
= -- Vc ~ r~j ~ ~i qtS(X~ -- xi) 

l 

= - vo Z ~,~J- 

(4) 
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By analogy with real electrostatic field theory, we expect that the potential energy 
of the system due to the fields of the particles will be [6] 

�89 Z Vi. self(xi), 
i 

where Vi.self is interpolated from the first term of Eq. (2), and the potential energy 
due to the external potential will be 51. Vi.ext �9 Let us see when this is true. From 
the identity 

X v,(x,) ~ vo X p#J ,  (s) 
i j 

which may be proven from Eqs. (1 and 3b), we find that the time rate of change 
of the prospective total energy is 

+, 
d-7 g Z v,,solf + Z �9 

i i 

d (K.E.+ Vc -- d-7 T 2 + vo y 
J ] 

1 
= Ve Z p j ~ j , e x t  -~  ~ Vc Z ( p j ~ L s e l f  - -  151~,.self). 

] J 

(6) 

The first term on the right-hand side is the rate of change of total energy due to 
its explicit time dependence; it corresponds to all/at and, therefore, its appearance 
is justified. To obtain an energy-conserving system, therefore, we want the second 
sum on the right-hand side to vanish. 

That sum is zero if a discrete analogue to Green's reciprocation theorem exists, 
i.e., if 

voy. ">'<~) vo y. <~)'") p j  9 j , se l t '  = p| 9).self (7) 

for any two density distributions p{1) and p(~) (just set p(1) = p, p(~) = t5 dt). An 
alternate proof of the sufficiency of reciprocity for energy conservation is in 
Appendix A. 

Such a theorem must exist with Lewis' prescription for the Poisson difference 
equation. Rewriting Eq. (60) in Ref. [1] in our notation, 

4~p! : Vc Z r f dx (~x S(Xy- x))(-~x S(Xj- x)) 
Y 

(8) 

and substituting into Eq. (7) establishes the identity since the integral is invariant 
under interchange of subscripts j and j'. This latter property is very much less 
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restrictive than  Eq. (8), and,  therefore,  the energy-conserving proper ty  is shared 
by  a much  wider class of  algori thms than  tha t  derived by  Lewis. 

Equa t ion  (7) can be shown to be satisfied in other  ways,  e.g., if  ~b is given by  
Eq. (2) and the Green ' s  funct ion gl.t is known to be  symmetric .  In  a neutral  
p l a sma  with periodic bounda ry  condit ions and a Poisson equat ion which is sym- 
metr ic  to reflection in the lattice planes,  the symmet ry  is ensured. 1 Ano the r  case 
is when  the Poisson equat ion  can be solved by a discrete Four ier  t ransform,  as in 
a periodic model ,  or with a square b o u n d a r y  at  a fixed potent ia l  [1]; one requires 
only tha t  the rat io  ~b(k)/p(k) be real [2]. I f  this rat io  is positive, then the self- 
potent ia l  energy is nonnegative.  

In  more  compl ica ted mode l  geometries one can at  least check gj.~ empirically. 
In  any  case it is clear tha t  the energy-conserving p roper ty  is easily obtained.  

IV. LEWIS' PoISSON DIFFERENCE EQUATION AND THE COULOMB FIELDS 

While Lewis '  prescr ipt ion of  the f o r m  of  Poisson's  equat ion is not  related to 
energy conservation,  it does a t t empt  to  reproduce accurately the C o u l o m b  inter- 
act ion implicit  in his Lagrangian,  even compensat ing  part ial ly for  errors  in inter- 
pola t ion.  To  see this we Four ier  t r ans fo rm Eq. (8) using the conventions of  [2, 4]: 

K2(k) i6(k) = 47to(k), K2(k) = E ko S2(kp ). (9ab) 
P 

In  one dimension k~ = k --  2rrp/Ax. (Note  K 2 >~ 0, so the field energy is non-  
negative.) 

The  particle density and  force field are related by [2] 

F(k) = --47riq2kS(k) E S~) n~p)/~., kp2S~(kp). 
P P 

(10) 

Suppose  an interpolat ion is used which is free of  "a l ias ing."  This requires tha t  
S(k)-----0 outside the first Brillouin zone, where the first zone is defined by  
max(k~Ax,  k~dy ,  k~ d z ) < 7 r  in a rectangular  lattice. This is called "band -  

1 Formally, g~.~ = g_~_~ = gj.~. The first equality follows from reflection, the second from 
translation by the amount i + ] .  There is an arbitrariness in specifying g because the 
total charge is zero in a periodic system) so that a transformation of the g obtained straight- 
forwardly from a Poisson solver may be required before the symmetries are explicit [7]. The 
relevance of symmetry is indicated by this example: Consider a single particle in an infinite 
system in which the Green's function is of the form g~.~ oc i -- ] (antisymmetric). Then the particle 
will accelerate in its own field gaining kinetic energy while the field energy is constant (zero). 
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limited" interpolation. It is not necessary that S(k) be constant ( =  1) within the 
first zone. In this case only the p ---- 0 terms contribute, leaving 

F(k) = --4~iq2n(k) k/k 2 in the first zone 

= 0 elsewhere. 

Thus the long wavelengths are exact in the alias-free limit. If  S(k) is not constant 
in the first zone, so that there are errors in the interpolation, Lewis' Poisson 
algorithm makes compensating "errors"  in calculating ~ to yield good overall 
accuracy. This is important to the practical realization of  high-accuracy algorithms, 
since if S(k) is constant in the first zone then S(x) drops off very slowly with 
increasing x and also does not remain positive. 

Lindman has pointed out that small oscillations of  a cold, nondrifting plasma 
in a linear-weighting Lewis model occur at exactly the correct frequency (except 
for time-integration errors). This interesting observation is true for any weighting 
function S, and in 1, 2, or 3 dimensions, as discussed in Appendix B. Here is an 
instance in which the variational principle does as well as can be done. However, 
this turns out to be an exceptional case, as will be seen. 

As a measure of accuracy in realistic cases we examine the "averaged force" 
F0(k), defined as follows [2]. Imagine holding the particles fixed while displacing 
(not rotating) the grid. Then F0(x ) is the average of F(x) over all such displace- 
ments. One can show that F0(k) is obtained from Eq. (10) by keeping only the 
p ---- 0 term in the numerator, 

Fo(k) : --47riq2n(k) k / ~  kp2S2(k.). (l 1) 
p 

The applicability of  Fo is discussed in [2] and in Appendix C. We will make use of 
it in Sects. VI and VII in discussing two examples. 

V. MOMENTUM CONSERVATION 

It has been mentioned elsewhere [2, 4, 8] that these models do not conserve 
momentum. We now show how this failure is associated with aliasing. Both are 
manifestations of the nonuniformity of  the system dynamics. Consider the total 
force on the system of  particles when band-limited interpolation is used: 

f dx n(x) F(x) = f dk n(k) r(--k) 

: f ( ~ ) 3 n ( k ) i k S ( k ) q 4 f f _ k ) :  f dk ikpOQ ~(--k) = O, (12) 
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where o(k) = qS(k)n(k) in the absence of  aliasing [2], and the integrand is odd. 
Thus the total particle force is zero and m o m e n t u m  is conserved. This is essentially 
because the particles can no longer sense the positions o f  the grid points;  the non-  
uniformity o f  the grid is removed f rom the dynamics.  (It should be noted that  in 
the absence o f  aliasing the usual models,  which conserve momentum,  can be made 
to conserve energy also. See, e.g., Eq. (25) o f  [2] with K 2 defined as kx in the 
first zone.) 

A simple instance of  the failure of  m o m e n t u m  conservat ion is the force exerted 
on a particle by its own field. We will examine this self-force later, but  let us 
assume for the present tha t  we are not  interested in such a force error  on the 
microscopic level (perhaps because it averages to zero) unless there is some 
macroscopic  manifestation. We now give two examples in which a large change 
may  take place in the total momentum.  

A n  instability has been predicted [4] and observed [9] in a cold plasma drifting 
th rough  the grid with a fixed neutralizing background.  There need no t  be two or  
more  plasma components  drifting relative to each other. Clearly this instability is 
no t  physically valid; its origin is in aliasing errors. Let  us divide the energy into 
three nonnegative parts:  kinetic energy associated with the mean motion,  kinetic 
energy of  mot ion  relative to the mean,  and field energy. The sum of  these can be 

0.01 

o. oo5 

J 

"Thermal" 

50 1 O0 

w t 
P 

Fro. 1. This is an example of macroscopic failure of energy conservation. A cold beam 
passing through a fixed uniform neutralizing background is made unstable by the grid (via 
aliasing). Up to about ~ t  = 30 the beam behaves as a linearized cold fluid. Drift kinetic energy 
(oc momentum ~) is converted to field energy and kinetic energy relative to the mean ("thermal" 
energy). Later behavior is more affected by the small number of particles used (960). The range of 
variation in the total energy is 0.6 Yo; this variation is due to time integration errors (o~At = 0.1). 
Other aspects of this computer run are shown in Fig. 2. 
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made  to remain  as nearly constant  as desired, by  decreasing the t ime step. As the 
instabili ty develops,  the latter two contr ibut ions to the total  energy bo th  increase, 
so the first cont r ibut ion  decreases. Therefore,  the mean  velocity and m o m e n t u m  
must  be decreasing. The  force errors  produce  a drag  on the mean  mot ion.  (Note  
that  the existence o f  the energy constant  means  the instability ampl i tude is 
l imited by the avai lable energy, which is not  the case for  such instabilities in the 
usual  models  in which the total  energy has been observed to increase several 
fold [9].) This description is suppor ted  by the s imulat ion results shown in 
Figs. 1 and 2. 
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FIo. 2. This shows phase space at times co~t = 20 and 100. The initial drift velocity was 
0.15 c % A x  and the third mode was excited. Soon mode 13 [= number of grid points (16) minus 
fundamental mode number] appears. The two are coupled by the grid and grow quickly together 
(a). [Note the expanded velocityscale in (a)]. The distribution after saturation shows little 
structure (b). 

Ano the r  example  o f  a drag leading to decreasing m o m e n t u m  is predicted for  a 
warm,  uniform,  stable p lasma drift ing th rough  the grid [4, 8]. The  loss o f  energy 
o f  mean  mot ion  is compensa ted  fo r  by  an increase in temperature .  

We do not  claim to have shown tha t  the lack o f  m o m e n t u m  conservat ion will 
necessarily be damaging  in practice, bu t  only tha t  it can have macroscopical ly  
visible consequences. 
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VI. THE LINEAR INTERPOLATION MODEL EXAMPLE 

We now examine the nature of the particle force F in the linear interpolation 
examples [1]. First, we note that F is discontinuous. For given, fixed {~j} in two 
dimensions, F~ is continuous and piecewise linear as a function of y alone, and is 
a step function when x alone is varied. In one dimension, F is a step function S. 
Thus this case may be expected to be noisier than the algorithms known as CIC 
or PIC [10, 11] (but the overall computational time is shorter because the expres- 
sion for F is much simpler). It may also be difficult to integrate in time accurately 
enough to realize an improvement in energy conservation. These questions have 
only begun to receive much empirical study [7]. 

M o m e n t u m  Conservation and Self-Forces 

As mentioned above, a simple example of the failure of momentum conservation 
is the force exerted on a particle by its own fields. This may be seen by considering 
a single particle in a large one-dimensional system, using linear interpolation. 
Place the particle between adjacent grid points located at x = 0 and Ax .  Then the 
self-force is 

A x  = 2rrqAx(po - -  pl) 

(x 
~- --47rq~ A x  ~ , 0 <~ x ~ Ax .  

(13) 

This is a simple harmonic oscillator potential well. Let us attempt to assess its 
importance in a single species plasma. It yields an oscillation frequency 
oJselr -~ ~%/~n--A-x much smaller than the plasma frequency co9 if the number of 
particles per cell n A x  is large. The well depth energy, Wself ,  may be compared to 
the thermal energy [2]: 

(�89 = ~ (nAx) = ~ (Ax/;~D)/(n1D), 

where m is the particle mass, v~ is the r.m.s, thermal velocity, and AD is the 
Debye length. These results have not been worked out exactly for two and three 
dimensions, but dimensional arguments indicate they would be 

r176 0(2 1 and Wself 1 [ A x  "l 2 
o% ---q- N~-~' �89 ~ oc ~ \ -~9 ] ' (14ab) 

2 The force may be regarded as obtained by nearest-grid-point (NGP) "weighting" of an 
electric field Ej+I/2 = - - (~+1-  ~3/Ax. 
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where N, = n V~ is the number of particles per cell. The frequency OJself is only 
an approximate indication of the average force gradient, since a single-particle 
oscillation is no longer simple harmonic. 

Even if these ratios are small, one may wish in addition to have the self-force 
small compared to the macroscopic force of a wave field, say. This more stringent 
condition imposes a lower limit on wave amplitude, for a given density: 

(wave field energy)/(thermal energy) ~ Ne2(/IX/AD) 2 (14c) 

Note that all these ratios are desirably small when N~ is large, given Ax/AD. 
Furthermore, since the other particles in the cell each contribute forces comparable 
to a particle's self-force, the latter becomes relatively small compared to normal 
many-body interactions. 

On the other hand, if Ax is decreased to zero holding n and Ao constant then 
eventually Wself becomes so small that essentially all particles are untrapped. The 
oscillation superimposed on particle trajectories becomes small enough in ampli- 
tude and high enough in frequency that there is little interference with desired 
plasma behavior. In this limit the self-force is unimportant because its effect is 
averaged rapidly, although its average magnitude is unchanged. 

We have so far ignored time-integration errors, in effect assuming the time step 
At is kept negligibly small. But if At is held constant whi le / Ix  is decreased then, 
when r ~It ~ 2, the self-force oscillation becomes unstable. Particles will be 
thrown out of cells, never trapped. Even before the instability threshold, M.A.  
Lieberman has shown that particle velocities can diffuse without limit. This is of  
course an instance of gross nonconservation of energy, permitted by the time- 
integration errors. 

While such unphysical behavior in even the "unperturbed" particle orbits is 
undesirable, one should compare it to velocity diffusion due to normal collisions. 
To estimate the self-force diffusion rate, assume ~Ix is so small that the particle's 
position in its cell is randomly and independently distributed from time step to 
step. The mean-square self-force in one dimension is ( F  ~) = 4rr2q4/3, leading to a 
diffusion given by 

(/1 v 2) = ( F  2 A t2/m 2) (t//i t). 

Defining a diffusion time rs by (Av 2) = vfl, we obtain 

oJ~%----- 12 (nAp)2 
e%At ' (15) 

whereas the normal collision times for a one dimensional plasma are c%rc ~ (nAo) 
or (nAn) ~. There would seem to be no difficulty in making % >~ re ,  as desired. A 
similar argument may be made in two and three dimensions. Thus the time- 
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integration errors appear to increase the significance of  the self-force, in this 
limit, but not disastrously. 

One might try to restore momentum conservation by adding a new force to 
each particle which cancels its self-force. Apart from any other objections, this 
merely forces us to consider a more complicated example in order to observe the 
nonconservation of momentum. Consider two particles placed in the same cell. 
With the self-force cancelled the force on each is due solely to the fields of the 
other. Suppose for some placement of the two particles, the net force is zero. 
Displace particle 1, still keeping it in the same cell. This changes the potential field 
seen by particle 2. Then the force changes on particle 2 only. Thus the net force 
on the two is no longer zero and momentum is not conserved. 

To see that no such approach will succeed, note that in the Vlasov limit the 
self-acceleration vanishes and the system is the same as without the self-force 
cancellation. The discussion of Sect. V shows that momentum is not conserved 
in the Vlasov limit. 

A more subtle approach is to seek some smoothing (convolution) to apply to 
p~- and/or ~bj. Suppose p is convolved with A, 

p /  = Ax ~ A1p~-I, (16) 
1 

and p' is used in Poisson's equation. Then one finds that the self-forces, and all 
interactions between particles in the same cell, have been decreased by the factor 
AxAo. (This should be taken as an indication of the effectiveness of smoothing, 
not  as an invitation to set A 0 = 0. Then symptoms return when the two particles 
are in adjacent cells.) 

The point is that the lack of conservation of momentum is not just a question 
of the single particle self-force. A simple example which makes this clear is when 
the particles are evenly spaced an integral submultiple of Ax apart in a periodic 
system. Then there are no forces at all. 

Macroscopic Field Accuracy 

If  a plasma phenomenon is not affected by displacing the grid relative to it (as 
must be so if the simulation is succeeding) then it would not be affected by replacing 
the interaction force by the "averaged force" F0, defined in Sect. IV [2]. As an 
important example we now consider oscillations of a warm plasma, using the 
accuracy of the period and rate of decay (or growth) as a measure of  the accuracy 
of the fields. 

In Appendix C we show that the contribution of the p ~ 0 (aliasing) terms in 
the dispersion function E(k, co) is fourth, or higher, order in Ax. Therefore, a 
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lower-order error in F 0 will reduce the order of overall accuracy. For  linear 
weighting we find, using Eq. (8) 

K~/k 2 = S2(k) -k 1 (kAx)2 4- O(Ax) 4. 

Thus Fo has a relative error --(kAx)2/12, causing a similar error in the oscillation 
frequency oJ. Further, the error in Re co can cause an error in Im co by changing 
the phase velocity; for a Maxwellian, this contribution to relative error in Im co 
is --Ax2/24Av 2, independent of k. 

This O(Ax 2) error may be removed by changing the Poisson algorithm. One 
way to do this is to solve the same Poisson equation but with 

1 7 1 
P/ -- 12 PJ-l@-~ PJ--~PJ+I 

as the source density. One is then left with an O(Ax 4) error in F 0 and from aliasing 
terms, resulting in a fourth order error in o)(k). 

These remarks hold also in 2 or 3 dimensions. The Poisson algorithms proposed 
by Lewis [1] are not optimal from the present point of view. Whether they are 
optimal in some other situation (apart from the singular case of cold plasma 
oscillations) remains to be shown. 

There should be no surprise that problems arise with the variational principle 
when the basis functions are an incomplete set. Many other such examples are 
known, e.g., Gibb's phenomenon in least-squares fitting of  trigonometric sums 
(yielding a truncated Fourier series), in which, as here, better algorithms can be 
obtained after taking into account the nature of the result one is trying to compute. 

VII. MORE ACCURATE ALGORITHMS USING SPLINES 

An "obvious" way to improve accuracy is to use higher-order Lagrange inter- 
polation. But the second-order S(x) is discontinuous and therefore unsuitable. 
Third order can be differentiated but yields a discontinuous force. Because of  
these discontinuities, S(k) drops off slowly for large k, implying poor aliasing 
properties. 

If we arrange to have several continuous derivatives, then S will drop off more 
rapidly. This suggests the use of  splines, which we now examine in the present 
formalism. Connection to the conventional spline-fitting problem is made in 
Appendix D. 

Define Sin(x) as the convolution of the square nearest-grid-point (NGP) weight- 
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ing function [2] with itself m times? $1 is the linear interpolation case above. The 
basis functions S m ( X j -  x), and therefore V(x), are piecewise polynomials of 
order m. Derivatives exist through to order m, which is discontinuous. Note 
also that Sin(x) ~ 0, which is not true for higher-order Lagrange interpolation. 

The transform is 
Sm(k) = (.sin �89 ~+1 

�89 (17) 

in one dimension. For large k, S,, = O(k-m-1). At nonzero multiples of 
kg = 2zr/Ax, S,,,(k) has a zero of order m + 1, and so is expected to be small 
nearby. This is also true for Lagrange interpolation. However, for small k, 
S(k ~ ko) is about 5 times larger, and S(k • 2ko) about 21 times larger, for 
second order Lagrange than for $2 �9 Thus the spline reduces aliasing errors for 
long wavelengths yet takes the same amount of work to evaluate numerically. 
For small k, S , , (k )~  1 -  (m + 1)(kAx)2/24, whereas S -  1 = O(k ~+1) or 
O(k '~+2) for Lagrange interpolation. However this "error" in the spline can be 
compensated for by the Poisson algorithm, as noted earlier. 

Let us consider a complete algorithm for a one-dimensional periodic system. 
Cubic splines seem most common in other applications, but $2 is computationally 
cheaper and is still a significant improvement over S~. We have (see Fig. 3) 

1 3 ( x - - X ~  2 )), 
and (18) 

1 (1 x - - X j )  2 
S2(X~• -- X) = ~ ~ zk A ~  ' with [ x -- X~ ] ~ Ax]2. 

The force may be regarded as obtained by linear interpolation of an electric field 
E~+1/2 = - - ( ~ + ~ -  ~3/Ax. 

1.0 i i i 

' •  0 . 5 -  

-2 -1 0 1 

x / ~  

FIG. 3. The parabolic spline weighting function $2 consists of 3 parabolic sections of length 
Ax, joined with no discontinuities in the derivative. 

3 For large m, S,~ approaches a Gaussian in the sense of the central limit theorem. S,, is an 
analogue of the Gaussian for these systems. 
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The Poisson algorithm may be found from Eq. (8) following Lewis, or from 
Eqs. (9b, 17): 

(19) ( 2  1 )21 
= ~ s i n ~ k A x  ~ ( 2 + c o s k A x ) ,  

where we have used the second derivative of Eq. 4.3.92 in [12]. This is all that is 
needed, if Fourier transform methods are to be used in the simulation. 

For  small k the relative "er ror"  in both K 2 and $22 is --(kAx)~/4 q- O(k4), so 
that the second-order errors in Fo(k) cancel (leaving a fourth-order relative error), 
showing how the long-wavelength errors due to $1 have been reduced. 

The difference-equation coefficients are the coefficients for an expansion of  
Eq. (19) in powers of exp(ikAx): 

--47rp~ Ax  ~ ---- ~(~+2 + ~b~._~) + k($j+ 1 + (~'-1) -- ~ -  (20) 

This is a fourth-order difference equation, so that in a nonperiodic finite system 
two more boundary conditions are needed in addition to the usual two. These 
will emerge naturally from Eq, (60) in [1] and will depend on how the interpolation 
is modified at the ends of the system. 

Equation (20) leads to a matrix equation in which the nonzero elements are all 
in a band five elements across down the diagonal, plus a few in the other corners. 
This can be solved quickly, but  it may be advantageous to note that Eq. (19) 
shows how to solve two tridiagonal systems instead. Factoring K 2 leads to 

sin ~ kAx  q~ = --47rp', ~ (2 -t- cos kdx)  p' = p. (2lab) 

The corresponding difference equations are 

1 t 2 t 1 t ~-Pj-1 + q- = (22a) gPj gPj+l Pj, 

~ J - - 1  - -  2~j + ~ ] + 1  : --4rcP/Ax2. ( 2 2 b )  

The self-force in this example scales as in Eq. (14) but with a smaller constant 
multiple. In general the deficiencies due to aliasing (the instability, momentum 
nonconservation, grid noise) are expected to be reduced. 

Returning to the question of  oscillations of a warm plasma, we find that aliasing 
terms make a contribution to E --  e0 which is O(dx6), while the error in F 0 is only 
fourth order. Again one achieves best accuracy in the complex frequency oJ(k) 
with a Poisson algorithm different than that specified by the variational principle. 
One can show this to be true for splines of any order. 
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VIII. CONCLUSIONS 

We have shown that the principal feature distinguishing the "energy-conserving" 
plasma simulation models is the derivation of the particle force from the grid 
potential. This is the same feature which eliminates some nonphysical instabilities 
present in the more common algorithms. Under very unrestrictive conditions on 
the Poisson difference operator, energy will be conserved and the field energy will 
be nonnegative. Thus, for example, the common practice of smoothing grid fields 
to suppress short wavelengths (and sometimes others as well) may be continued 
with these models. 

Lewis' formalism does not take into account aliasing errors, so to understand 
it we consider the idealization in which the interpolation is free of aliasing (band- 
limited interpolation). It appears that only in this case is momentum conserved, 
and we find that the Coulomb field Fourier modes are exact for all wavelengths 
which can be represented unambiguously on the grid (k in the first BriUouin zone); 
Lewis' Poisson operator compensates for any remaining interpolation errors. In 
the practical examples of linear and parabolic weighting, aliasing errors spoil this 
compensating effect, and by one measure the Poisson difference equations given 
in [1] are unnecessarily inaccurate. 

Total momentum changes considerably under some circumstances. In practice 
one may wish to monitor total momentum, just as total energy is often monitored 
in the usual models. The simplest manifestation of the failure of momentum con- 
servation is the self-force. This force may not necessarily be troublesome. It may 
be reduced by smoothing the grid fields, which as said earlier will often be done 
for other reasons already. 

To improve the accuracy of the algorithm, higher-order spline interpolation is 
clearly preferable to higher-order Lagrange interpolation. The parabolic spline 
model is derived in detail; it achieves improvement over the linear case, at some 
increase in computational expense. 

Questions remain as to the advantages of these models, e.g., when time integra- 
tion errors are taken into account, spoiling the exactness of energy conservation, 
but perhaps having less effect on the suppression of nonphysical instabilities. 
Empirical study is indicated. 

APPENDIX A: ANOTHER VIEWPOINT ON ENERGY CONSERVATION 

Lewis has suggested examining the force obtained as a gradient of the total 
potential energy. Using this would certainly lead to an energy-conserving code, 
but would be too expensive to compute. We wish to compare this force to that 
used in practice, given by Eq. (3a). 
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The gradient is 

a 1 Z + 

OtOl ~ Ve ( 6qPl 6qr ~ -- --VeZ, ~ ' m + ~ \ ~ x ,  4 j . s e l f - - p j ~ / .  (A.1) 

Using Eq. (1) the first term is seen to be the force of Eq. (3a). The second term 
is similar to the last term in Eq. (6), and vanishes when it does. There are two 
conclusions: 

When there is reciprocity, as per Eq. (7), the force used in a code is identical 
to the negative gradient of the total field energy. This is a simple alternate proof 
that reciprocity leads to energy conservation. The discussion leading to Eq. (7) 
shows also that reciprocity is required. 

(We can also show using reciprocity that if we had differentiated ~3" in Eq. (3a) 
we would have doubled the particle self forces.) 

APPENDIX B: SMALL OSCILLATIONS OF A COLD PLASMA 

In this appendix we show that small-amplitude oscillations of a cold plasma 
with no drift have the correct frequency and spatial properties. This is done with 
and without use of Fourier transforms. 

The linear response of a cold fluid plasma is 

n(k, o J) = inok" F(k, oJ)/moJ 2. (B.1) 

We multiply this by S(k), replace F using Eq. (10), replace k by kp,, sum over 
p' making use of the periodicity of the sums in (10), then cancel the sums ~ Sn 
and ~ kp2S 2. We are left with simply 

o j 2 -  4~noq 2 
m ~ ~ (B.2) 

independent of k. This is the correct result, having no error due to finite Ax. 
Although this derivation is very short [once Eq. (10) has been derived] it is 

instructive to repeat the derivation ab initio without using Fourier transforms. 
The meaning of linearization and the fluid-limit will be clarified, as will the nature 
of the oscillations. For brevity the discussion will be kept to one dimension; the 
generalization is trivial. 
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We assume that the unperturbed particle positions xi0 are equally spaced, and 
there is an integer number of particles per cell. They are neutralized by a fixed 
background. After perturbing the particle positions by x i l ,  

p~ = q ~ x,~ ~ S(X~ -- X,o). (B.3) 
U~o 

This Taylor expansion of Eq. (1) is where linearization first enters. We now 
differentiate this twice in time. The acceleration ~1 will be given by Eq. (3), but 
evaluated at xi0 (linearization again). Rearranging the sum, we have 

q~ io))(~x~oS(Xj--X,o) ). (B.4) f i t -  m Ax ~ ~,  ~ ( ~-~o~o S(X~, -- x 

Assuming that the number of particles per cell, no Ax, is large, the particle sum 
may be replaced by an integral. Then, comparing with Eq. (8), we have simply 

4rrnoq 2 
~ j -  - -  p ; .  (B .5 )  

m 

Each pj oscillates at the plasma frequency and independently of the others. Alter- 
natively the ~b~ can oscillate independently. This can be understood by working 
through the linear case with only one pj or ~bj oscillating. The oscillations of 
particles in the same cell are not independent. 

If  one uses Eq. (E.3) for the kinetic energy in a linear-weighting model, placing 
the particles so that grid points fall between them, and keeping oscillation ampli- 
tudes low enough that particles do not cross grid points, then total energy is 
conserved to within roundoff error (the author has tried this). But this is a very 
special situation l 

The derivation breaks down if the particles have any drift motion. In this case 
the dispersion relation Eq. (C.1) may be used. Some features of this case are 
discussed in Sect. V and [4]. 

APPENDIX C: ALIASING AND THE DISPERSION RELATION 
FOR WARM PLASMA OSCILLATIONS 

We have stated that the dispersion of waves in a warm plasma is described very 
well by a dispersion relation based on the averaged force, F 0 . This has been 
observed in numerical solutions of the exact (including aliasing) dispersion rela- 
tion. In this section we will show that the aliasing errors can be fourth or fifth 
order in Ax, in the linear weighting case. Therefore, the dispersion errors at long 

58I/I2/2-8 
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wavelengths can be dominated by second-order errors in Fo if the variational 
principle is used, as discussed at the end of Sect. VI. 

The dispersion relation is [2, 4, 8] 

co2 V S2(kp) fk ~f0 dv 
�9 = 1 +  K 2 ~  J P" 8v t o - - k p ' v '  (c.1) 

p 

in which the particles are treated as a linearized Vlasov plasma, and x, v, and r 
are continuous. The effects of finite grid spacing are treated exactly. For  simplicity 
we will work in one dimension. 

I f  one keeps only the p = 0 term in the above, one has an approximate relation 
which we will write as �9 = 0 and which would be obtained if one started with 
F o as the interaction force. We will examine the difference between �9 and �9 
due to the aliasing terms. 

In the linear weighting case we have 

2kAx S2(k~) : ( k ~ - ~  "sin ~)k~Ax \4 : \-~P-l[ kAx ]4 (1 "I- pzr ) +  O(kAx) 6, (C.2) 

when p ~ 0 and kAx ~ ~r. From this alone one suspects that �9 -- eo is fourth 
order in Ax. To be sure we must consider the response of the plasma to short 
wavelengths by evaluating the velocity integral. We will use a Maxwellian with 
root-mean-square velocity spread v~ superimposed on a dirft velocity v o . Then 

�9 : 1 1 [co--k2,v o] 
2K2AD ~ S2(k,) Z '  (C.3) 

2 ~ \~v/2 I k~ I v~/" 

Z'  is the derivative of the Fried-Conte plasma dispersion function [13]. We can 
proceed further analytically in the interesting case h/~ ~ Ax, Vo ~ vt. Then the 
small argument expansion of Z '  is appropriate: 

1Z'  (@~-~)= --i ~:e-eU2_ 1_ t_ ~:2 l se4 ~6 - -  ~ + . . .  ( C . 4 )  

Substituting this into Eq. (C.3) and using smaU-k expansions like (C.2) we have, 
to lowest nonvanishing order in Ax, 

11 )I �9 - - � 9  + i 2 . 6 5  • 10 - a -  + 4 v  0 . (C.5) 
Vt 

The corresponding error in co(k) is nearly proportional, so the errors in Re to 
and Im co are fourth and fifth order in Ax, respectively, due to aliasing. However, 
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using the variational principle, the error in Fo is O(dx) 2. An overall error of  
O(Ax) 4 in to(k) requires a different Poisson operator, as discussed in Sect. VI. 

As an aside, the imaginary part of  Eq. (C.5) shows the damping influence of 
the aliasing terms when v 0 = 0. On the other hand, with vo 4 : 0  these terms can 
become destabilizing. However instability is unlikely unless Vo ~ v~ ; if we estimate 
to = to~ -q- kvo then aliasing is destabilizing if 

Ikl2,D > 3  Vo 

But if kho is not small Landau damping will eliminate the instability. 

APPENDIX D: 
RELATION TO THE CONVENTIONAL SPLINE INTERPOLATION PROBLEM 

The usual spline interpolation problem is to find a V(x), given V~. = V(X~), which 
is piecewise polynomial and has a specified number of derivatives. We will use 
the same variables as in Eq. (3). In the common cubic case [V(x) has a third deriv- 
ative, which is discontinuous] one would solve 

v~ = q A x  y~ r  - x j ) ,  
j ,  

together with appropriate boundary conditions, as a set of  simultaneous equations 
for the coefficients {r (Note that Vj # qCj for m > 1). The matrix is tridiagonal, 
with elements in the usual 1:4:1 ratio. The spline fit is then given by Eq. 3, except 
perhaps near the boundary. It is customary to specify the spline fit by means of 
the {V;} plus the derivatives {Vj'} or {V~:}, although our {r give a more compact 
specification. 

A P P E N D I X  E: ENERGY CALCULATION WITH FINITE TIME STEP 

Field and kinetic energies must be calculated from fields and velocities known 
at different times, when the usual "leap-frog" time integration is used. If  we 
simply add the field energy to the kinetic energy at a time At/2 later, then this 
estimate of the total energy may be expected to be in error by approximately half 
the change per time step in the kinetic energy. This O(At) error will usually be 
much larger than the O(At 2) relative error in the time evolution of the system; so 
that it is an overly pessimistic diagnostic. Therefore, a simulation code should 
use some sort of time-centered average to obtain an energy diagnostic which has 
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an O(At  2) error. We will consider several possibilities, using as an example a 
simple harmonic oscillator. 

The leap-frog time integration is given by 

whose exact solution is 

X n +  1 - -  X n 

A t  

V n + l / 2  - -  V n _ l / 2  

A t  

- -  V n + l / 2  

= - -  ~O02Xn 

Vn+l/2 ~-~ VCOS ~Otn+l/2  

V 
Xn = sin O~tn 

O9 o 

tn = n a t  and ~ooAt/2 = sin(~oAt/2). In the limit At---~O, OJo~X ~ + v 2 = where 
V 2, a constant. Several estimates of this energy are: 

COo2X,, 2 + v,~al~2 = V ~ :~ -}1 V2(cOoAt ) sin 2cotn• , (E.1) 

COo2Xn 2 + ( v,-1/2 -+- v,+1/2 )2 = V 2 1 V2(eOoAt)2 (1 q- cos 2cot,), (E.2) 

1 V2(oJoAt)2 ' (E.3) (.O02Xn 2 -~ V n _ l / 2 V n + l / 2  : V 2 _ -~ 

1 2 v~+1/2)2 = V2 -41 V2(oJoAt)~ cos 2oJt. O~o2Xn ~ + -~ (v~_i/2 -+- - -  (E.4) 

The first was discussed above. The kinetic energy in the other three is obtained 
from an arithmetic mean, geometric mean, and root  mean square, respectively, 
of  the previous and following velocities. The third has the advantage of being 
constant. The fourth has the advantage that it oscillates about the correct value, 
and the energy of a collection of many oscillators with random phases would be 
given correctly. 

If the center of  oscillation is drifting with velocity V0, Eqs. (E.2-E.4) apply 
with the first term V 2 replaced by 

ojAt V~ V~ + 2V~176 - - T  cos eotn + 

Therefore, there is no change in the comparison of their errors. 
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Another set of possibilities involves defining the energy at the half-steps and 
averaging the field energy. Two choices for this average are 

Vc 1 ~ (m.,,C'J.,, + pJ.,§ 

V~ V~ 
2 E = E. 

J 

(E.5) 

(E.6) 

The  la t te r  average has  been suggested by  O. Buneman.  The  fo rmer  is posi t ive 
definite, the  la t te r  is not .  F o r  ins tance,  if  one has  a s tanding  wave,  then the field 
energy given by  Eq. (E.6) will be negat ive  when the fields change sign. This m a y  be 
a nuisance,  e.g., in mak ing  semi logar i thmic  plots  o f  energy vs t ime.  Kinet ic  energy 
ca lcu la ted  as pe r  (E.3) also can  be negat ive.  However  i t  is re la t ively  unl ikely  tha t  
enough  par t ic les  would  reverse d i rec t ion  in the same t ime step to  make  the to ta l  
k inet ic  energy o f  a system negative.  
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